泰国流行的排毒治疗到底是什么?

5分钟前阅读1回复0
zaibaike
zaibaike
  • 管理员
  • 注册排名1
  • 经验值185815
  • 级别管理员
  • 主题37163
  • 回复0
楼主

#解毒治疗是功用医学范畴一项十分根底的治疗手段,包罗生物转化及非生物转化解毒两个部门,几乎与所有疾病在病理上相联系关系,泰国因为医疗旅游业兴旺,有良多的欧美人士选择在泰国停止抗衰治疗,所以那些新兴的欧美医学手艺在泰国十分遍及

目前泰国整合医学临床开展比国内快15年,国内功用医学临床处于起步阶段,而泰国的一些病院,比我们病院已经有15年的汗青,那是因为政策及旅游气氛所决定。

#所以今天和各人分享一下,解毒治疗的心理根底及一些根本的干涉体例,目标是对那个概念停止医学上的普及,不然很容易被不专业的人带入歪门邪道,十分可惜。

#代谢解毒

在人类生物化学中,解毒能被更准确地描述;它涉及特殊代谢路子,整个身体都有活性,其工做是将身体不需要的化学物消弭。该路子(与代谢解毒相关)涉及一系列的酶反响以中和消融毒素,将它们运输到排泄器官(如肝脏或肾脏),它们能被排除体外。解毒类型有时称为异生物量代谢,是身体消弭外来异物的次要机造。但是,解毒反响也凡是被用于消弭不需要的内源物,将其排出体外。

过量的激素,维生素,免疫分子和信号化合物也会被同样的解毒酶系统消弭,以庇护身体免受缓解毒素损害或肃清轮回系统的处方药。新陈代谢解毒反响不单单是阻遏情况中毒素的损害,也是维持机体内情况不变的关键。

毒素和毒物的表露

毒素是机体产生的有害化合物;有时想强调那些化合物由生物器官产生,因而称为“生物毒素”。人造化合物因具有的潜在毒性,被称为毒物。毒素和毒物的存在通过各类路子对安康存在倒霉影响。有些具有普遍的诱变剂和致癌物(引起DNA损伤或变异,能招致癌症),其他能干扰特殊的代谢路子(那可能会招致机体特殊系统的功用障碍,如神经系统,肝脏和肾脏)。

饮食是毒素表露的次要来源之一。毒素会通过几种路子本身进入饮食,出格是微生物污染,人造毒物(包罗农药,食物加工的残留物,处方药和工业废水),非食物性动物来源的慢性毒素污染。1,2有些重金属毒物(如铅,汞,镉,铬)固然长短人造的,但释放到情况中仍对人体具有潜在迫害,也能从饮食中被发现。微生物毒素是由细菌和霉菌排泄,能通过被污染的食物进入人体。

以至是食物造做的办法也可能将食物酿成毒素。3例如,高温可将肉类和谷物中的含氮化合物别离酿成致突变剂苯并芘和丙烯酰胺。熏鱼和干酪包罗前提毒素亚硝酸化合物(NOCs),可被结肠细菌代谢成致突变剂。

除了食物,呼吸到挥发性的有机物也是常见因素,对身体具有倒霉影响,包罗肾脏损伤,免疫问题,激素紊乱,血液疾病,增加哮喘和收气管炎。4

更大的非炊事来源毒物之一存在与家里空气中。5建筑质料(如地板或墙的笼盖物,刨花板,黏合剂和油漆)能释放几种有毒废气,可在人体中发现。6例如,苯的衍生物凡是被用于消毒剂和除臭剂,情况庇护署(EPA) 查询拜访发现98%的成人体中均存在那类物量。7另一项EPA查询拜访发现,别的三种可溶性毒物在全国各地的成人组织样本测试中100%存在。8

比来建造或革新的建筑物中被发现大量化学废料,产生病态建筑综合症。9地毯危害更大,能释放几种神经毒素。对400块地毯样本停止测试,超越90%的样本中发现神经毒素,不异样本中,足够数量能招致老鼠灭亡。10出人意料的是,在陈述发布不久,71名有病的员工从华盛顿新的EPA总部撤离,称有安康问题,其最末归结与27000平米的新地毯有关。11

地毯也能吸收情况毒物,“非职业性农药表露研究”(NOPES)发现每种地毯样本均匀含有12种农药,该路子确定了,婴幼儿的非饮食性表露农药DDT,阿特灵,莠去津和西维因。12

制止毒素/毒物表露

人体味通过各类路子降低,但不成能将所有毒素/毒物消弭,以下办法可降低体内毒素:

削减家中VOCs的引入,用不含VOC的清洁产物,低VOC的涂料,用小块地毯替代新地毯。13

存储食物在不含双酚A或邻苯二甲酸盐的容器中,制止在塑料容器中加热食物。

寻找有机食物,消费过程不含农药,使蔬菜比拟传统消费体例农药残留量更少。(固然有机食物寻找有机食物,消费过程不含农药,使蔬菜比拟传统消费体例农药残留量更少。(固然有机食物并不是不含农药)。14并不是不含农药)。14

洗涤生果和蔬菜能削减部门农药残留,固然它不克不及对所有农药类型有效15,买来的生果和蔬菜用清洗液洗其实不比清水洗对削减农药残留更有效。16削皮能进一步削减农药残留程度。

削减加工食物的摄入。即便是不含人工似乎剂的食物可能含有足以被检测出的毒素化合物,那些化合物从加工过程引入(通过化学转化)。例如,许多毒素能在食物加工过程中的高温下产生。17

固然没煮熟的肉能产生的急性中毒风险(食物中毒)比煮得过熟更危险,在肉类筹办期削减毒素产生:利用明火或热金属外表加工可制止肉类的间接表露,用炖或焖的体例对肉加工不高于250◦ F,在烹调过程直达动肉,以制止在高温下耽误烹调时间,制止摄入烧焦的部门。18

异生物量代谢的概略

复杂的代谢解毒系统的驱动力其实相当简单,依赖于水充任溶剂消融物量。

因为细胞膜次要是脂量,对大大都水溶性化合物不透过(称为“极性”)。水溶性化合物运送进细胞需要专门的转运卵白。通细致胞膜上恰当的转运卵白,细胞仅允许所需要的水溶性分子进入,可避免水溶性毒素进入。同样,细胞也能通过类似机造排出多余的水溶性化合物(如细胞废料)。

脂溶性化合物与水溶性化合物相反,它们能自在通细致胞膜。因而,对身体损害的脂溶性毒素可自在进入细胞内部,并难以除去。

代谢解毒系统是将脂溶性化合物转化成水溶性化合物。毒素“增溶”是通过酶将水溶性分子毗连到脂溶性毒素的特定毗连点。若是该毒素不含有任何毗连点,他们起首通过一组独立的酶,将毒素增加分子“把手”。以下的增溶反响中,将具有化学润色的毒素运出细胞外,并排出体外。

通过三组细胞卵白或酶去除有害的脂溶性化合物的三个步调,第一阶段(转化),第二阶段的酶(连系),第三阶段的卵白(转运)。

三个阶段的代谢过程具有差别的生化需乞降差别的代谢信号,但必需去除无用的外源物(如毒素或药物)或内源物(如过量激素)。三个阶段的酶具有几个特点,使他们具有重要的感化,19差别于其他酶,解毒酶;能够与许多差别的化合物反响扩大毒素,只要单一的酶代谢,集中在身体部分间接表露于情况中,如肝脏,肠或肺。是诱导型,意味着其合成可增加毒素表露。

肝脏是次要的解毒器官,它可过滤血液中来自肠道的毒素,并将其排泄。解毒感化也可发作在肠,肾,肺,脑,三个阶段的解毒过程在其他处所反响水平较小。

三个阶段的排毒

第一阶段排毒---酶法转化

在大大都情况下,第一阶段的酶是将脂溶性化合物转化成水溶性化合物,筹办第二阶段的解毒排毒。在第一阶段的转发反响在细胞色素P450s长进行的。

CYP酶(P450家族)具有非特异性,每一个具有识别和修改差别毒素的才能。只要57种CYP酶能崩溃内所有毒素。20但是,其全面性的代价是速度很慢。CYP对毒素的代谢比拟其他酶十分迟缓。例如CYP3A4,其代谢速度是每秒1-20个分子21,而超氧化物歧化酶(SOD)每秒代谢超越一百万个分子。解毒的次要部位为了克制其速度较慢的缺陷,产生大量的CYP,CYPs可代表高达肝脏总卵白的5%,类似浓度也能够在肠道中找到。CYP是此中研究最充实的,因为它们可做为解毒卵白在代谢处方药物和内源性生化物的感化(例如芳香酶是一种CYP可将睾酮改变为雌二醇)。22

其他酶也有助于第一阶段解毒,出格是黄素单氧酶(FMOs负责对香烟中尼古丁的解毒),乙醇,乙醇脱氢酶(对饮用酒精的代谢)和单胺氧化酶(MAOs,神经元合成血清素,多巴胺,肾上腺素和几种较旧的抗抑郁药)23

第二阶段解毒---酶连系:颠末第一阶段的转化,本来的脂类可溶性毒素已被转换成水溶性形式,但反响中间体不克不及从细胞内立即消弭,其原因是:1.第一阶段的反响不充实从而无法将毒素以水溶性形式完全排除;2.许多情况下,毒素颠末第一阶段后,其活性较原毒素降低,使得他们比以往更具毁坏性。那两个缺点会在第二阶段被处置,酶会修改第一阶段的产品,既增加其消融度,又降低其毒性。第二阶段酶的活性是负责代谢解毒系统的抗诱变抗癌特征。该阶段可低于化学致癌性,尤其在癌症的起始阶段。24

在基因程度,大大都第二阶段酶的产生由核因子红源2(Nrf2)的卵白量控造,次要调控抗氧化反响。25在一般情况下,Nrf2存在于静行形态的细胞量中(细胞内液包罗各类细胞化合物)。26然而,氧化应激(由CYP触发对毒素的代谢)活化Nrf2,允许其进入细胞核。27在细胞核中,Nrf2能针对许多抗氧化卵白量,包罗第二阶段的酶。28通过那种体例,Nrf2”感测”细胞中氧化应激或毒素的存在。Nrf2参与调理重要解毒过程分子的基因活性,包罗谷胱甘肽和超氧化物歧化酶(SOD)的合成。它还在重金属解毒中起重要感化,辅酶Q10的收受接管,是一种有效的抗氧化剂。29,30,31

某些事物成分(包罗西兰花中的萝卜硫素和蛇麻草中的黄腐酚),也能够间接激活Nrf2和抗氧化酶活性,那可部门解释其对解毒的有益效果。32

第二阶段酶的几个类别,其活性和生物化学显著差别。在许多情况下,第二阶段的酶表示出多余--特殊的外源物或内源物能被一种以上的二阶段酶解毒。

UDP-葡萄糖醛酸(UGTs)可催化葡糖醛酸反响,葡糖醛酸可附着于毒素,使其反响性较低,更具水溶性。几种差别的UGTs散布在整个身体,此中肝脏是次要位置。在人体中,许多外源物,情况毒物和40-70%的临床药物通过UGTs代谢。33增塑剂双酚A34和苯并芘(来自煮熟的肉类)35是UGT两个重要的底物(酶感化的分子底物)。肠道的UGTs可能对几种口服药物和炊事弥补剂的生物操纵度有影响,并在组织中具有化学预防感化。36

谷胱甘肽-S-转移酶(GSTs)催化谷胱甘肽转移(显著的细胞抗氧化剂)在第一阶段起感化。GSTs在几种内源性物量的代谢感化,包罗类固醇,甲状腺激素,脂溶性维生素,胆汁酸,胆红素和前列腺素等。37GSTs也具有抗氧化酶的功用,消弭自在基38,氧化脂量或DNA。39GSTs是可溶性酶,在天然界和人体中无处不在,在人体肝脏和其他组织(如大脑,心脏,肺,肠道,肾脏,胰脏,晶状体,骨骼肌,前列腺,脾脏和睾丸)中4%是可溶性卵白。40,41GSTs连系的产品可通过胆汁排出,或者转移到肾脏能被进一步加工并从尿液排出。

磺酸基转移酶(SULTs)是在有害的受体分子上添加磺基。该反响在解毒反响和一般的生物合成(由特殊的SULTs催化,在软骨素和肝素上添加磺基42)中都长短常重要的,SULTs在药物和有害物量解毒和几种内源分子的代谢中具有重要感化,包罗类固醇,甲状腺素,肾上腺激素,血清素,视黄醇,抗坏血酸盐和维生素D。43SULTs在胎盘,子宫和前列腺中对调理雄激素程度具有重要感化。44与其他第二阶段解毒的酶比拟,SULTs将大量的前致癌物(如煮熟肉中的杂环胺)转换成高活性中间体,可做为化学致癌物和突变剂。

USTs,GSTs和SULTs可促进体内大部门的解毒反响,其他第二阶段解毒的酶的感化较小,但仍然很重要,包罗:

甲基转移酶将S-腺苷-L-甲硫氨酸(SAMe)做为底物催化甲基化反响。儿茶酚-O-甲基转移酶(COMT)是消弭过量儿茶酚胺类神经递量(如肾上腺素和多巴胺)的次要路子。甲基化反响是第二阶段解毒中少数的降低水溶性的反响之一。46

芳香胺类N-乙酰转移酶(NATs):NATs对致癌物量芳香胺和杂环胺的解毒。47

氨基酸连系酶:乙酰辅酶A合成酶和乙酰辅酶A氨基酸,N-乙酰转移酶将氨基酸(凡是是甘氨酸和谷氨酰胺)毗连到有害物量。食物防腐剂苯甲酸通过氨基酸连系是毒素代谢的一个例子。48

第三阶段解毒--转运:第三阶段转运存在于许多组织中,包罗肝脏,肠道,肾脏和大脑,它们供给一道屏障阻遏有害物量进入或积极将异生物移除,内源性物量进出细胞。49水溶性化合物进出细胞需要特殊的转运体,第三阶段的转运体对第二阶段产生的物量移出细胞是必须的。第三阶段转运体的卵白称为ABC转运体(ATP连系式)50,因为他们需要化学能量,以ATP的形式,将毒素穿细致胞膜排出细胞外。51有时称为多种耐药卵白(MRPs),因为耐药的癌细胞将其做为匹敌化学药物的庇护伞。52

在肝脏中,第三阶段转运体将谷胱甘肽,硫酸盐,葡萄糖醛酸甙连系运出细胞外被胆汁包裹以排出。在肾脏和肠道,第三阶段转运体能将血液中的异生物去除,排出体外。53

第一,二阶段反响的平衡

第一阶段代谢的产品可能比本来的分子具有更高的毒性,若是第一阶段代谢产品能在第二阶段被敏捷中和,就不会呈现问题。但是,并不是老是如斯。有些因素会招致第一阶段的速度增加,从而突破平衡,产生的毒性代谢物比解毒更快,增加细胞毒性的风险。那些因素包罗饮食(有些食物和弥补剂可增加第一阶段酶的活性),香烟和酒精摄入(都能诱导第一阶段反响),年龄(能削减第二阶段UGT,GST和SULT的活性),性别(经前期女性的第一阶段CYP2A4活性比男性或更年期女性高30-40%),疾病和遗传。54

第一二阶段不服衡的后果是毒性反响。例如,由行痛药扑热息痛的次要成分对乙酰氨基酚过量形成。对乙酰氨基酚是美国招致肝脏损伤最常见的原因。55对乙酰氨基酚的常规治疗剂量,其解毒次要是由第二阶段的UGT和SULT酶。少量药物在第三阶段解毒:起首转化成毒性代谢物NAPQI通过第一阶段CYP酶,此中间体通过第二阶段的酶GST连系谷胱甘肽。

若是对乙酰氨基酚过量,UGT和SULT酶会敏捷被按捺。大大都的药物履历第三阶段解毒(转化成NAPQI,被GST连系)。因为第二阶段GST酶的活性变慢,谷胱甘肽的贮存削减56,NAPQI产生比解毒快良多。肝脏中增加的NAPQI招致普遍性损伤,包罗脂量过氧化,细胞卵白失活,毁坏DNA新陈代谢。57对乙酰氨基酚的过量治疗包罗及时弥补谷胱甘肽通过谷胱甘肽合成酶的氨基酸前体。(最常见的是N-乙酰半胱氨酸58)

解毒过程的其他特征

其他的解毒过程与三个阶段的酶系同一致,以进步效率或扩大功用性。异生物代谢的特征不典型,它们对削减或缓解毒素表露很重要。

胆汁排泄不单单是消化过程中脂肪和脂溶性营养的吸收的关键,也是代谢过程中在肝脏中将毒素连系,运入肠道,从而排出体外。

抗氧化性是对第一阶段排毒反响(会频繁产生自在基副产品)的重要庇护办法。许多抗氧化酶由不异的基因调理(通过Nrf2),第二阶段的酶对自在基损害最小化十分重要。

重金属中度可通过间接产生自在基招致氧化损伤,损耗抗氧化剂。59例如汞,砷和铅可招致谷胱甘肽分子失活,因而其抗氧化特征不成用或做为有害物量解毒的底物。60招致谷胱甘肽再轮回酶的活性降低。61重金属代谢的一种体例是金属螯合卵白(MTs)的螯合感化,对按捺各类金属离子的毒性十分高效,如锌,镉,汞,铜,铅,镍,钴,铁,金和银。62一分子的MT可绑定7-9个锌或镉离子(或两者的任何组合),12个铜离子,18个汞离子。63细胞应激(尤其是氧化应激)产生MT与第二阶段的酶类似,可被Nrf2的活性刺激。64

通过潜在毒素的诱捕会障碍吸收(如在肠道中外表黏附到其他分子,如活性炭或高岭土65)是一种减缓表露有效的体例。那种体例是有些炊事纤维对运输颠末肠道的毒素停止吸附。吸收潜在毒素,通过肠道微生物群解毒具有类似效果。

关于代谢解毒你需要晓得的是:

解毒是代谢过程将身体不需要的脂溶性化合物移除。

不需要的化合物能够是外来的(如情况毒素)或内源性的(毒物,如过量激素)

解毒反响发作在全身,此中肝脏是次要的解毒器官。

解毒反响具有三个步调,其底子目标是将毒素转化成无活性,水溶性物量排出体外。

第一阶段是将毒素转化成代谢中间体,可被第二阶段的酶中和。第一阶段次要是细胞色素P450酶起次要感化。

第二阶段反响是将毒素连系成其他水溶性物量,增加其消融度。差别品种的第二阶段酶催化差别的连系反响。

UGTs催化大大都临床药物的葡萄糖醛酸反响和几种情况毒素。

GSTs通过抗氧化剂谷胱甘肽连系毒素,他们可间接取出自在基。

SULTs催化磺化反响,他们对控造性激素程度很重要。

第二阶段的其他反响利用相对较少,包罗甲基化反响,氨基酸连系反响。

第三阶段的解毒包罗对转化的运输,连系毒素进出细胞。差别的转运卵白在人体差别部门工做一致,通过胆汁或尿液排出体外。

以下解毒反响,将毒素排出体外:

A.肝脏的代谢产品凡是由胆汁包裹进入肠道排出体外,但有时会被运输到血液通过肾脏排泄。

B.肠道细胞在吸收毒素后可解毒,将其释放到肠腔中。

C.肾脏能进一步过滤轮回系统的毒素,将其通过尿液排出体外。

饮食改善代谢解毒

代谢解毒中足够数量差别品种的酶和转运卵白,代谢解毒依赖于其相关路子,对大量的饮食因子敏感。

大量营养素和微量营养素能影响三个阶段的解毒。卵白量缺乏使CYP代谢降低,高卵白饮食使CYP代谢加强。66其相反效果是碳水化合物的吸收??,脂量对CYP的影响尚不明白。高效的一阶段反响需要许多微量营养素,维生素A,B2,B3,叶酸,C,E,铁,钙,铜,锌,镁,硒的缺乏会招致一种或多种一阶段酶活性的下降,或减缓特殊药物的转化。67

二阶段差别的酶需要响应差别的必须营养素,尤其是做为辅因子的B族维生素。

GST连系的谷胱甘肽削减与饮食中含硫氨基酸(甲硫氨酸,半胱氨酸)的不敷有关,维生素B6有助于甲硫氨酸转化成半胱氨酸,维生素B2和B3的活性也与谷胱甘肽活性相关,可反复操纵氧化的谷胱甘肽。

甲基反响是将SAMe做为底物,SAMe通过叶酸和维生素B12依赖性酶反响合成。

NAT’s(芳香胺类N-乙酰转移酶(NATs):NATs对致癌物量芳香胺和杂环胺的解毒。)和氨基酸酰基转移酶通过辅因子乙酰辅酶A连系反响,由维生素B5合成,其酶依赖于多种B族维生素。

几个第二阶段的反响需要能量分子ATP。例如,第二阶段甲基化,磺化,葡萄糖醛酸和谷胱甘肽连系反响的化学辅酶都需要ATP,那些ATP的中间反响需要依赖镁。

类黄酮在体内试验中被普遍研究,在动物模子中,他们可是CYP的活性降低,第二阶段酶活性增加(但是SULTs会被按捺)。68柚皮素(柚子中的黄酮类化合物)会按捺CYP的活性,已在人体试验中被证明。69因而,在吃处方药的时候应该制止食用柚子。其他类黄酮在动物试验中被证明具有轻度按捺多种CYPs的感化,包罗大豆中的染料木素, 木量素异黄酮和牛尿酚70,71,以及黑茶中的茶黄素。72

绿茶提取物和解皮素衍生物异懈皮素和芦丁与其他类黄酮差别,绿茶单宁在体内能增加CYP活性73,还能增加第二阶段的活性(GST和UGT)。同样地,懈皮素衍生物在老鼠中能增加肠道和肝脏CYPs,在那个尝试中,懈皮素对CYPs没有任何效果。74

Nrf2 催化剂:普遍的饮食成分在体外试验或细胞培育中可激活Nrf2,间接增加第二阶段酶的活性。包罗表没食子儿茶素没食子酸酯(EGCG)75,白藜芦醇76,姜黄素77,和其代谢产品四氢姜黄素,具有第二阶段活性78,肉桂醛79,咖啡酸苯乙酯,α-硫辛酸80,α-生育醇81,番茄红素82,苹果多酚(绿原酸和根皮苷)83,银杏叶84,查尔酮85,辣椒素86,橄榄树的羟基酪醇87,大蒜中的烯丙基硫化物88,叶绿酸89,啤酒花的黄腐酚90。那些动物营养素的感化在动物和人中已被证明,尤其是他们的化学剂障碍和抗氧化性能。那些效果能被结石通过匹敌氧化酶的间接刺激,和通过Nrf2的二阶段解毒感化。91

异硫氰酸盐来源于葡糖异硫酸盐是活性硫化物具有潜在的化学预防特征,其原型是萝卜硫素,是绿花菜的组分,一般用于临床癌症治疗。

异硫氰酸盐如萝卜硫素和吲哚如吲哚-3-甲醇(I3C)是二阶段解毒酶中最有效的天然诱导剂。92萝卜硫素是I3C的衍生物,均可间接接货Nrf2。93增加几种防御性酶的产量,包罗GSTs,UGTs,谷氨酸-半胱氨酸毗连酶(合成半胱氨酸)。94I3C衍生物是许多第一,二阶段酶的强烈诱导剂,因而是动物营养素中研究最充实,具有预防癌症感化。95,96,97,98,99

日本山葵的化合物100,101,和十字花科的苯甲基异硫氰酸(BITC102)同样刺激二阶段酶活性通过Nrf2激活。胡萝卜素和HITC都能降低CYP活性。103

大蒜中的硫磺会在老鼠体内按捺胃肠道组织的各类CYPs104,降低GST和NQO1的活性。105通过激活Nrf2,大蒜的成分可释放试验大鼠肝脏中因有毒金属化合物而耗竭的抗氧化酶。106

D-苧烯(来自柠檬油)的抗癌感化在尝试中获得胜利。107部门抗癌活性是因为第一,二阶段酶的诱导。在大鼠中,D-苧烯能增加总CYP活性108,肠道UGT活性109和肝脏GST和UGT活性。110,111

钙D-葡萄糖酸存在于许多生果和蔬菜中,在人体中能被小量消费。112当在肠道活化,其功用做为葡萄醛酸糖的按捺剂,通过结肠细菌和肠道细胞产生酶。在肠道中,葡萄醛酸糖消弭(通过胆酸连系)通过连系毒素--根本上改变UGTs的酶催化反响。早期解离恢复毒素到以前有危害的形式,使其可吸收。进步葡萄醛酸糖的活性与增加癌症风险相关。113

叶绿酸是叶绿素衍生物114在啮齿类动物中可按捺CYP活性115,促进细胞内的GST活性。116叶绿酸和叶绿素独一的化学构造能使将毒素绑定到肠道以阻遏吸收。在动物模子中,叶绿酸和叶绿素的生物操纵度低,促进几种情况致癌物的排泄。117,118,119毒素捕捉可部门解释肝癌是因为黄曲霉毒素表露(毒素由实菌黑曲霉产生)。180人每天三次食用100毫克叶绿酸,尿液中DNA-黄曲霉毒素下降了55%。

益生菌:通过捕捉和代谢外源物或重金属,确定益生菌的菌株可能降低毒素表露。121黄曲霉素和棒曲霉素的解毒(两种毒素由曲霉菌产生)122,杂环胺和二甲肼的代谢123,铅和镉的绑定。124此外,短链脂肪酸丁酸盐由乳酸菌消费(从炊事纤维中发酵)可刺激肠道细胞产生GST,同时也有助于炊事纤维的抗癌特征。125

N-乙酰半胱氨酸:N-乙酰半胱氨酸可替代硫磺消费谷胱甘肽。其自己是自在基清道夫,可有效削减氧化压力,尤其是在重金属中度中。126因为它能间接弥补谷胱甘肽程度,NAC比甲硫氨酸在预防肝脏损伤中更有效127,目前用于治疗扑热息痛中毒的治疗,也能有效治疗急性肝脏损伤。128

奶蓟(水飞蓟),是治疗肝脏损伤优良的动物营养素129,水飞蓟素是包罗几种相关多酚类化合物的混合物。水飞蓟素促进解毒通过几种弥补机造。水飞蓟素的抗氧化才能可降低肝脏氧化压力与毒素代谢相关,尤其是脂量过氧化130,具有庇护细胞内谷胱甘肽程度的效果。131水飞蓟素与NAC类似,可庇护肝脏匹敌扑热息痛中毒(可能通过类似机造庇护谷胱甘肽程度)。水飞蓟素比NAC对扑热息痛中毒的解毒感化愈加有效(在动物模子中,能在中毒24小时后仍可有效治疗)。132

第三阶段转运体,对安康细胞消弭毒素是重要的,也会降低药物治疗的效果。在化疗药物中,该过程变得尤其困难,第三阶段的转运使癌细胞产生耐药性。因而,第三阶段的活性刺激可能并不是有效。

饮食因素对第三阶段转运体具有差别的效果。例如,苹果多酚133,和萝卜硫素(与两倍的西兰花效果相等)134均可刺激第三阶段卵白量的活性。相反,姜黄素代谢物四氢姜黄素可降低人体宫颈癌和乳腺癌细胞第三阶段转运体的活性。135白藜芦醇可降低第三阶段卵白合成,可阻遏急性白血病细胞对化疗药物的耐药性。136水飞蓟素是奶蓟的次要成分,也是第三阶段的按捺剂。138

胆汁流:是毒素在人体中的次要载体,恰当的胆汁流是代谢解毒过程中关键的最末步调。胆汁流障碍(胆汁淤积),由肝脏功用障碍形成或胆管阻塞,从而招致肝脏毒素累积和肝脏损伤。胆汁淤积也可由代谢解毒自己形成。解毒过程和排泄临床药物进入胆汁可产生胆汁淤积肝脏疾病。139朝鲜蓟做为肝脏庇护剂在传统医学中已被用了几百年,刺激胆汁流(胆汁淤积),是更佳的草药利胆剂。

朝鲜蓟包罗多种抗氧化剂,可庇护肝脏的氧化损伤,与咖啡奎宁酸类似,在动物模子试验中可刺激胆汁流。140咖啡奎宁酸也担负欧蓍草141,142,茴香143和蒲公英144的利胆性能。穿心莲,大蒜,小茴香,生姜,香旱芹,咖喱和芥菜均可在啮齿类动物中具有刺激胆汁流和胆汁酸消费。145,146,147,148

建议

N-乙酰半胱氨酸:每天1-3次,每次600mg

绿茶提取物:EGCG尺度化:煤炭725mg

懈皮素:每天250-500mg

B族复合维生素:按标签申明

镁:每天300-600mg

西兰花提取物:葡糖异硫氰酸盐尺度化:每天1-2次,每次400mg,随餐服用

I3C(吲哚-3-甲醇):每天80-160mg

SAMe:每天2-3次,每次400mg,与B12,B6和叶酸同用

水飞蓟提取物:水飞蓟素:每天750mg

水解硫辛酸:每天240-480mg

D-葡萄糖二酸钙:每天140-300mg

白藜芦醇:每天250mg

姜黄素:每天400mg,随餐服用

叶绿酸:每天3次,每次100mg

朝鲜蓟提取物:每天500mg

益生菌:按标签服用

参考文献:

1. Prakash AS, Pereira TN, Reilly PE, Seawright AA. Pyrrolizidine alkaloids in human diet. Mutat Res 1999;443(1-2):53-67

2. Borchers A, Teuber SS, Keen CL, Gershwin M. Food safety. Clin Rev Allergy Immunol 2010;39 (2) : 95-141

3. Ferguson LR, Philpott M. Nutrition and mutagenesis. Annu Rev Nutr 2008;28:313-29

4. Crinnion MJ. Environmental Medicine, Part 2 – Health Effects of and Protection from Ubiquitous Airborne Solvent Exposure. Altern Med Rev 2000;5 (2) : 133-143

5. Nielsen GD, Larsen ST, Olsen O, et al. Do indoor chemicals promote development of airway allergy? Indoor Air 2007;17 (3) : 236-55

6. Wallace LA, Pellizzari ED, Hartwell TD, et al. Personal exposure, indoor-outdoor relation- ships, and breath levels of toxic air pollutants measured for 355 persons in New Jersey. EPA 0589.

7. Hill RH Jr, Ashley DL, Head SL, et al. p- Dichlorobenzene exposure among 1,000 adults in the United States. Arch Environ Health 1995;50:277-280.

8. Broad scan analysis of the FY82 national human adipose tissue survey specimens. EPA Office of Toxic Substances. EPA 560/5-86- 035.

9. Ruhl RA, Chang CC, Halpern GM, Gershwin ME. The sick building syndrome. II. Assess- ment and regulation of indoor air quality. J Asthma 1993;30:297-308.

10. Duehring C. Carpet, EPA stalls and industry hedges while consumers remain at risk. Informed Consent 1993;1:6-32

11. Crinnion MJ. Environmental Medicine, Part 2 – Health Effects of and Protection from Ubiquitous Airborne Solvent Exposure. Altern Med Rev 2000;5 (2) : 133-143

12. Whitemore RW, Immerman FW, Camann DE, et al. Non-occupational exposures to pesticides for residents of two U.S. cities. Arch Environ Contam Toxicol 1994;26:47-59.

13. Crinnion MJ. Environmental Medicine, Part 2 – Health Effects of and Protection from Ubiquitous Airborne Solvent Exposure. Altern Med Rev 2000;5 (2) : 133-143

14. Crinnion MJ. Environmental Medicine, Part 4: Pesticides – Biologically Persistent and Ubiquitous Toxins. Altern Med Rev 2000;5 (5) : 432-447

15. Štěpán R. , Tichá J. , Hajšlová J. , Kovalczu, T. and Kocourek V. Baby food production chain: pesticide residues in fresh apples and products. Food Addit Contam 2005; 22 (12):1231-42

16. Krieger RI, Brutsche-Keiper P, Crosby HR, Krieger AD. Reduction of pesticide residues of fruit using water only or Plus Fit Fruit and Vegetable Wash. Bull Environ Contam Toxicol 2003;70(2): 213-8

17. Borchers A, Teuber SS, Keen CL, Gershwin M. Food safety. Clin Rev Allergy Immunol 2010;39 (2) : 95-141

18. Knize MG, Felton JS. Formation and human risk of carcinogenic heterocyclic amines formed from natural precursors in meat. Nutrition Reviews 2005; 63(5):158–165.

19. Jakoby WB and Ziegler DM. The enzymes of detoxication. J Biol Chem 1990;265(34):20715-8

20. Redlich G, Zanger UM, Riedmaier S, et al. Distinction between human cytochrome P450 (CYP) isoforms and identification of new phosphorylation sites by mass spectrometry. J Proteome Res 2008; 7 (11):4678-88

21. Dai D, Tang J, Rose R, et al. Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos. J Pharmacol Exp Ther 2001;299 (3):825-31

22. Lardone MC, Castillo P, et al. P450-aromatase activity and expression in human testicular tissues with severe spermatogenic failure. Int J Androl. 2010 Aug 1;33(4):650-60. Epub 2009 Nov 3.

23. Johnson R. Physiology of the gastrointestinal tract, Volume 1 - Page 1827. (2006) : 2000

24. Nakamura Y, Miyamoto M, Murakami A et al. A phase II detoxification enzyme inducer from lemongrass: identification of citral and involvement of electrophilic reaction in the enzyme induction* 1. Biochemical and … (2003)

25. Moi P, Chan K, Asunis I, Cao A, Kan YW. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci USA 1994;91 (21) : 9926-30

26. Kobayashi A, Kang MI, Okawa H, et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 2004;24 (16) : 7130-9

27. Motohashi H and Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 2004;10 (11) : 549-57

28. Jung KA and Kwak MK. The Nrf2 system as a potential target for the development of indirect antioxidants. Molecules 2010;15 (10) : 7266-91

29 Landi L, Fiorentini D, Galli MC, Segura-Aguilar J, Beyer RE. DT-Diaphorase maintains the reduced state of ubiquinones in lipid vesicles thereby promoting their antioxidant function. Free Radic Biol Med 1997;22 (1-2) : 329-35

30. Itoh K, Chiba T, Takahashi S, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 1997;236 (2) : 313-22

31. Klaassen CD and Slitt AL. Regulation of hepatic transporters by xenobiotic receptors. Curr Drug Metab 2005;6 (4) : 309-28

32. Dinkova-Kostova AT, Holtzclaw WD, Cole RN et al. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci USA 2002;99 (18) : 11908-13

33. Jancova P, Anzenbacher P, Anzenbacherova E. Phase II drug metabolizing enzymes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2010;154 (2) : 103-16

34. Mazur CS, Kenneke JF, Hess-Wilson JK, Lipscomb JC. Differences between human and rat intestinal and hepatic bisphenol A glucuronidation and the influence of alamethicin on in vitro kinetic measurements. Drug Metab Dispos 2010; 38 (12): 2232-8

35. Tukey and Strassburg. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol Toxicol 2000; 40 pp. 581-616

36. Van der Logt EM, Roelofs HM, van Lieshout EM, Nagengast FM, Peters WH. Effects of dietary anticarcinogens and nonsteroidal anti-inflammatory drugs on rat gastrointestinal UDP-glucuronosyltransferases. Anticancer Res 2004;24 (2B) : 843-9

37. van Bladeren PJ. Glutathione conjugation as a bioactivation reaction. Chem Biol Interact 2000;129 (1-2) : 61-76

38. Sheehan D, Meade G, Foley VM, Dowd CA. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 2001;360 (Pt 1) : 1-16

39. Ketterer B. Glutathione S-transferases and prevention of cellular free radical damage. Free Radic Res 1998;28 (6) : 647-58

40. van Bladeren PJ. Glutathione conjugation as a bioactivation reaction. Chem Biol Interact 2000;129 (1-2) : 61-76

41. Hayes JD and Strange RC. Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology 2000;61 (3) : 154-66

42. Habuchi O. Diversity and functions of glycosaminoglycan sulfotransferases. Biochim Biophys Acta 2000;1474 (2) : 115-27

43. Glatt H and Meinl W. Pharmacogenetics of soluble sulfotransferases (SULTs). Naunyn Schmiedebergs Arch Pharmacol 2004;369 (1) : 55-68

44. Coleman. Human Drug Metabolism: An Introduction. (2010) pp. 360

45. Jancova P, Anzenbacher P, Anzenbacherova E. Phase II drug metabolizing enzymes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2010;154 (2) : 103-16

46. Jancova P, Anzenbacher P, Anzenbacherova E. Phase II drug metabolizing enzymes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2010;154 (2) : 103-16

47. Mulder GJ. Conjugation reactions in drug metabolism: an integrated approach : substrates, co-substrates, enzymes and their interactions in vivo and in vitro. Taylor and Francis, 1990. 413 pages

48. Hodgson. A Textbook of Modern Toxicology. (2010) pp. 672

49. Yang YM, Noh K, Han CY, Kim SG Transactivation of genes encoding for phase II enzymes and phase III transporters by phytochemical antioxidants. Molecules 2010;15 (9) : 6332-48

50. Keppler D. Multidrug resistance proteins (MRPs, ABCCs): importance for pathophysiology and drug therapy. Handb Exp Pharmacol 2011;201 : 299-323

51. Mizuno, N.; Niwa, T.; Yotsumoto, Y.; Sugiyama, Y. Impact of drug transporter studies on drug discovery and development. Pharmacol. Rev. 2003, 55, 425-461.

52. Klaassen C and Lu H. Xenobiotic Transporters: Ascribing Function from Gene Knockout and Mutation Studies. Toxicological Sciences 2008;101 (2) : 186-196

53. Klaassen C and Lu H. Xenobiotic Transporters: Ascribing Function from Gene Knockout and Mutation Studies. Toxicological Sciences 2008;101 (2) : 186-196

54. Liska DJ. The Detoxification Enzyme Systems. Altern Med Rev 1998;3 (3) : 187-198

55. Larson et al. Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study. Hepatology 2005;42 (6) : 1364-72

56. Moyer AM, Fridley BL, Jenkins GD et al. Acetaminophen-NAPQI Hepatotoxicity: A Cell Line Model System Genome-Wide Association Study. Toxicol Sci 2011;120 (1) : 33-41

57. Bessems JG, Vermeulen NP. Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Crit Rev Toxicol 2001; 31 (1): 55-138

58. Lauterburg BH, Corcoran GB, Mitchell JR. Mechanism of action of N-acetylcysteine in the protection against the hepatotoxicity of acetaminophen in rats in vivo. J Clin Invest 1983; 71 (4): 980-91

59. Ercal N, Gurer-Orhan H, Aykin-Burns N. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 2001;1 (6) : 529-39

60. Costa M. In vitro assessment of the toxicity of metal compounds. Biological Trace Element Research 1984;

61. Patrick L. Lead. Altern Med Rev 2006;11 (2) : 114-127

62. Nordberg M. Metallothioneins: historical development and overview. Met Ions Life Sci 2009;

63. Sabolić I, Breljak D, Skarica M, Herak-Kramberger CM. Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. Biometals 2010);23 (5) : 897-926

64. Nordberg M. Metallothioneins: historical review and state of knowledge. Talanta 1998;

65. Phillips TD, Lemke SL, Grant PG. Characterization of clay-based enterosorbents for the prevention of aflatoxicosis. Adv Exp Med Biol 2002;504 : 157-71

66. Guengerich FP. Influence of nutrients and other dietary materials on cytochrome P-450 enzymes. Am J Clin Nutr 1995;61 (3 Suppl) : 651S-658S

67. Guengerich FP. Influence of nutrients and other dietary materials on cytochrome P-450 enzymes. Am J Clin Nutr 1995;61 (3 Suppl) : 651S-658S

68. Moon YJ, Wang X, Morris ME. Dietary flavonoids: effects on xenobiotic and carcinogen metabolism. Toxicol In Vitro 2006;20 (2) : 187-210

69. Fuhr, U., Klittich, K., Staib, A.H., Inhibitory effect of grapefruit juice and its bitter principal, naringenin, on CYP1A2 dependent metabolism of caffeine in man. Br. J. Clin. Pharmacol. 1993; 35, 431–436.

70. Helsby, N.A., Chipman, J.K., Gescher, A., Kerr, D., Inhibition of mouse and human CYP 1A- and 2E1-dependent substrate metabolism by the isoflavonoids genistein and equol. Food Chem. Toxicol. 1998;36, 375–382.

71. Yang YM, Noh K, Han CY, Kim SG Transactivation of genes encoding for phase II enzymes and phase III transporters by phytochemical antioxidants. Molecules 2010;15 (9) : 6332-48

72. Catterall F et al. Hepatic and intestinal cytochrome P450 and conjugase activities in rats treated with black tea theafulvins and theaflavins. Food Chem Toxicol. 2003 Aug;41(8):1141-7.

73. Liu, T.T., Liang, N.S., Li, Y., Yang, F., Lu, Y., Meng, Z.Q., Zhang, L.S. Effects of long-term tea polyphenols consumption on hepatic microsomal drug-metabolizing enzymes and liver function in Wistar rats. World J. Gastroenterol. 2003;9, 2742–2744.

74. Křížková J, Burdová K, Stiborová M, Křen V, Hodek P. The effects of selected flavonoids on cytochromes P450 in rat liver and small intestine. Interdiscip Toxicol 2009;2 (3) : 201-4

75. Yuan JH, Li YQ, Yang XY. Inhibition of epigallocatechin gallate on or- thotopic colon cancer by upregulating the Nrf2-UGT1A signal path- way in nude mice. Pharmacology 2007; 80: 269 – 78

76. Hsieh TC, Lu X, Wang Z, Wu JM. Induction of quinone reductase NQO1 by resveratrol in human K562 cells involves the antioxidant response element ARE and is accompanied by nuclear translocation of tran-scription factor Nrf2. Med Chem 2006; 2: 275 – 85

77. Nayak S and Sashidhar RB. Metabolic intervention of aflatoxin B1 toxicity by curcumin. J Ethnopharmacol 2010;127 (3) : 641-4

78. Osawa T. Nephroprotective and hepatoprotective effects of curcuminoids. Adv Exp Med Biol 2007;595 : 407-23

79. Liao BC, Hsieh CW, Liu YC, Tzeng TT, Sun YW, Wung BS. Cinnamaldehyde inhibits the tumor necrosis factor-alpha-induced expression of cell adhesion molecules in endothelial cells by suppressing NF-kap- paB activation: Effects upon IkappaB and Nrf2. Toxicol Appl Pharmacol 2008; 229: 161 – 71

80. Lii CK, Liu KL, Cheng YP et al. Sulforaphane and alpha-lipoic acid upregulate the expression of the pi class of glutathione S-transferase through c-jun and Nrf2 activation. J Nutrition 2010;140 (5) : 885-92

81. Feng Z, Liu Z, Li X, et al. α-Tocopherol is an effective Phase II enzyme inducer: protective effects on acrolein-induced oxidative stress and mitochondrial dysfunction in human retinal pigment epithelial cells. J Nutr Biochem 2010;21 (12) : 1222-31

82. Wang H and Leung LK. The carotenoid lycopene differentially regulates phase I and II enzymes in dimethylbenz[a]anthracene-induced MCF-7 cells. Nutrition 2010;26 (11-12) : 1181-7

83. Veeriah S, Miene C, Habermann N et al. Apple polyphenols modulate expression of selected genes related to toxicological defence and stress response in human colon adenoma cells. Int J Cancer 2008;122 (12) : 2647-55

84. Liu XP, Goldring CE, Wang HY, Copple IM, Kitteringham NR, Park BK. Extract of Ginkgo biloba induces glutathione-S-transferase subunit-P1 in vitro. Phytomedicine 2009; 16(5):451–455

85. Liu YC, Hsieh CW, Wu CC, Wung BS. Chalcone inhibits the activation of NF-kappaB and STAT3 in endothelial cells via endogenous electrophile. Life Sci 2007; 80: 1420 – 30

86. Joung EJ, Li MH, Lee HG, Somparn N, Jung YS, Na HK et al. Capsaicin in- duces heme oxygenase-1 expression in HepG2 cells via activation of PI3K-Nrf2 signaling: NAD(P)H:quinone oxidoreductase as a potential target. Antioxid Redox Signal 2007; 9: 2087 – 98

87. Zhu L, Liu Z, Feng Z et al. Hydroxytyrosol protects against oxidative damage by simultaneous activation of mitochondrial biogenesis and phase II detoxifying enzyme systems in retinal pigment epithelial cells. J Nutr Biochem 2010;21 (11) : 1089-98

88. Gong P, Hu B, Cederbaum AI. Diallyl sulfide induces heme oxygenase-1 through MAPK pathway. Arch Biochem Biophys 2004; 432: 252 – 60

89. Zhang Y, Guan L, Wang X, Wen T, Xing J, Zhao J. Protection of chloro- phyllin against oxidative damage by inducing HO-1 and NQO1 ex- pression mediated by PI3K/Akt and Nrf2. Free Radic Res 2008; 42: 362–71

90. Dietz BM, Kang YH, Liu G et al. Xanthohumol isolated from Humulus lupulus Inhibits menadione-induced DNA damage through induction of quinone reductase. Chem Res Toxicol 2005;18 (8) : 1296-305

91. Surh YJ, Kundu JK, Na HK. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med 2008;74 (13) : 1526-39

92. Sulforaphane Glucosinolate monograph. Altern Med Rev 2010;15 (4) : 352-362

93. Dinkova-Kostova AT, Holtzclaw WD, Cole RN et al. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci USA 2002;99 (18) : 11908-13

94. Mulcahy RT, Wartman MA, Bailey HH, Gipp JJ. Constitutive and beta-naphthal- one-induced expression of the human gamma-glutamylcysteine synthetase heavy subunit gene is regulated by a distral antioxidant response element/ TRE sequence. J Biol Chem 1997;272:7445-7454

95. Ociepa-Zawal M et al. The effect of indole-3-carbinol on the expression of CYP1A1, CYP1B1 and AhR genes and proliferation of MCF-7 cells. Acta Biochim Pol. 2007;54(1):113-7.

96. Katchamart S and Williams DE. Indole-3-carbinol modulation of hepatic monooxygenases CYP1A1, CYP1A2 and FMO1 in guinea pig, mouse and rabbit. Comp Biochem Physiol C Toxicol Pharmacol. 2001 Aug;129(4):377-84.

97. Ebert B et al. Induction of phase-1 metabolizing enzymes by oltipraz, flavone and indole-3-carbinol enhance the formation and transport of benzo[a]pyrene sulfate conjugates in intestinal Caco-2 cells. Toxicol Lett. 2005 Aug 14;158(2):140-51.

98. Bradlow HL. Review. Indole-3-carbinol as a chemoprotective agent in breast and prostate cancer. In Vivo. 2008 Jul-Aug;22(4):441-5.

99. Nho CW and Jeffery E. The synergistic upregulation of phase II detoxification enzymes by glucosinolate breakdown products in cruciferous vegetables. Toxicol Appl Pharmacol. 2001 Jul 15;174(2):146-52.

100. Morimitsu Y, Hayashi K, Nakagawa Y et al. Antiplatelet and anticancer isothiocyanates in Japanese domestic horseradish, Wasabi. Mech Ageing Dev 2000;116 (2-3) : 125-34

101. Hasegawa K, Miwa S, Tsutsumiuchi K, Miwa J. Allyl isothiocyanate that induces GST and UGT expression confers oxidative stress resistance on C. elegans, as demonstrated by nematode biosensor. PLoS ONE 2010;5 (2) : e9267

102. Y. Nakamura, Y. Morimitsu, T. Uzu, H. Ohigashi, A. Murakami, Y. Naito, Y. Nakagawa, T. Osawa, K. Uchida, A glutathione S-transferase inducer from papaya: rapid screening, identification and structure–activity relationship of isothiocyanates

103. Zhou C, Poulton EJ, Grün F et al. The dietary isothiocyanate sulforaphane is an antagonist of the human steroid and xenobiotic nuclear receptor. Mol Pharmacol 2007;71 (1) : 220-9

104. Zhou SF, Xue CC, Yu XQ, Wang G. Metabolic activation of herbal and dietary constituents and its clinical and toxicological implications: an update. Curr Drug Metab 2007;8 (6) : 526-53

105. Munday, R. and Munday, C. M. (1999). Low dises of diallyl disulfide a com- pound derived from garlic increase tissue activities of quinone reductase and glutathione transferase in the gastrointestinal tract of the rat. Nutr Cancer. 34:42–48.

106. Kalayarasan S, Sriram N, Sureshkumar A, Sudhandiran G. Chromium (VI)-induced oxidative stress and apoptosis is reduced by garlic and its derivative S-allylcysteine through the activation of Nrf2 in the hepatocytes of Wistar rats. J Appl Toxicol 2008;28 (7) : 908-19

107. Sun J. D-Limonene: Safety and Clinical Applications. Altern Med Rev 2007;12 (3) : 249-264

108. Crowell PL. Prevention and therapy of cancer by dietary monoterpenes. J Nutrition 1999

109. Van der Logt EM, Roelofs HM, van Lieshout EM, Nagengast FM, Peters WH. Effects of dietary anticarcinogens and nonsteroidal anti-inflammatory drugs on rat gastrointestinal UDP-glucuronosyltransferases. Anticancer Res 2004;24 (2B) : 843-9

110. Elegbede JA, Maltzman TH, Elson CE, Gould MN. Effects of anticarcinogenic monoterpenes on phase II hepatic metabolizing enzymes. Carcinogenesis 1993;14 (6) : 1221-3

111. Nakamura et al. A phase II detoxification enzyme inducer from lemongrass: identification of citral and involvement of electrophilic reaction in the enzyme induction* 1. Biochemical and … 2003;

112. Calcium-D-Glucarate Monograph. Altern Med Rev 2002;7 (4) : 336-340

113. Zoltaszek R et al. [The biological role of D-glucaric acid and its derivatives: potential use in medicine]. Postepy Hig Med Dosw (Online). 2008 Sep 5;62:451-62.

114. Ferruzzi MG Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutrition Research 2007;

115. Yun CH, Jeong HG, Jhoun JW, Guengerich FP. Non-specific inhibition of cytochrome P450 activities by chlorophyllin in human and rat liver microsomes. Carcinogenesis 1995;16:1437 - 40.

116. Fahey JW, Stephenson KK, Dinkova-Kostova AT, Egner PA, Kensler TW, Talalay P. Chlorophyll, chlorophyllin and related tetrapyrroles are significant inducers of mammalian phase 2 cytoprotective genes.Carcinogenesis 2005;26:1247 - 55.

117. Morita K, Matsueda T, Iida T, Hasegawa T. Chlorella accelerates dioxin excretion in rats. J Nutr 1999;129:1731 - 6.

118. Natsume Y, Satsu H, Kitamura K, Okamoto N, Shimizu M. Assessment system for dioxin absorption in the small intestine and prevention of its absorption by food factors. Biofactors 2004; 21(1-4):375 - 7.

119. Versantvoort CHM, Oomen AG, Van de Kamp E, Rompelberg CJM, Sips AJAM. Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food. Food Chem Toxicol 2005;43:31 - 40.

120. Egner PA, Wang JB, Zhu YR, Zhang BC, Wu Y, Zhang QN, et al. Chlorophyllin intervention reduces aflatoxin-DNA adducts in individuals at high risk for liver cancer. Proc Natl Acad Sci 2001;98(25): 14601 - 6.

121. Resta SC. Effects of probiotics and commensals on intestinal epithelial physiology: implications for nutrient handling. J Physiol (Lond) 2009;587 (17) : 4169-74

122. Topcu A, Bulat T, Wishah R, Boyaci IH. Detoxification of aflatoxin B1 and patulin by Enterococcus faecium strains. Int J Food Microbiol 2010;139 (3) : 202-5

123. Nowak A and Libudzisz Z. Ability of probiotic Lactobacillus casei DN 114001 to bind or/and metabolise heterocyclic aromatic amines in vitro. Eur J Nutr 2009;48 (7) : 419-27

124. Ibrahim F, Halttunen T, Tahvonen R, Salminen S. Probiotic bacteria as potential detoxification tools: assessing their heavy metal binding isotherms. Can J Microbiol 2006;52 (9) : 877-85

125. Pool-Zobel B, Veeriah S, Böhmer FD. Modulation of xenobiotic metabolising enzymes by anticarcinogens -- focus on glutathione S-transferases and their role as targets of dietary chemoprevention in colorectal carcinogenesis. Mutat Res 2005;591 (1-2) : 74-92

126. Yedjou CG, Tchounwou CK, Haile S, Edwards F, Tchounwou PBl. N-acetyl-cysteine protects against DNA damage associated with lead toxicity in HepG2 cells. Ethn Dis 2010;20 (1 Suppl 1) : S1-101-3

127. Alsalim W and Fadel M. Towards evidence based emergency medicine: best BETs from the Manchester Royal Infirmary. Oral methionine compared with intravenous n-acetyl cysteine for paracetamol overdose. Emerg Med J 2003;20 (4) : 366-7

128. Ghabril M, Chalasani N, Björnsson E. Drug-induced liver injury: a clinical update. Curr Opin Gastroenterol 2010;26 (3) : 222-6

129. Abenavoli L, Capasso R, Milic N, Capasso F. Milk thistle in liver diseases: past, present, future. Phytother Res 2010; 24 (10): 1423-32

130. Bosisio E, Benelli C, Pirola O, et al. Effect of the flavanolignans of Silybum marianum L. on lipid peroxidation in rat liver microsomes and freshly isolated hepatocytes. Pharmacol Res 1992;25:147-154.

131. Campos R, Garido A, Guerra R, et al. Silybin dihemisuccinate protects against glutathione depletion and lipid peroxidation induced by acetaminophen on rat liver. Planta Med 1989;55:417-419.

132. Hau DK, Wong RS, Cheng GY et al. Novel use of silymarin as delayed therapy for acetaminophen-induced acute hepatic injury. Forsch Komplementmed 2010; 17 (4): 209-13

133. Veeriah S, Miene C, Habermann N et al. Apple polyphenols modulate expression of selected genes related to toxicological defence and stress response in human colon adenoma cells. Int J Cancer 2008;122 (12) : 2647-55

134. Harris KE and Jeffery EH. Sulforaphane and erucin increase MRP1 and MRP2 in human carcinoma cell lines. J Nutr Biochem 2008;19 (4) : 246-54

135. Limtrakul P, Chearwae W, Shukla S, Phisalphong C, Ambudkar SV. Modulation of function of three ABC drug transporters, P-glycoprotein (ABCB1), mitoxantrone resistance protein (ABCG2) and multidrug resistance protein 1 (ABCC1) by tetrahydrocurcumin, a major metabolite of curcumin. Mol Cell Biochem 2007;296 (1-2) : 85-95

136. Kweon, S.H.; Song, J.H.; Kim, T.S. Resveratrol-mediated reversal of doxorubicin resistance in acute myeloid leukemia cells via downregulation of MRP1 expression. Biochem. Biophys. Res. Commun. 2010, 395, 104-110.

137. Saller R, Meier R, Brignoli R: The use of silymarin in the treatment of liver diseases. Drugs 2001;61:2035–2063.

138. Lee CK and Choi JS. Effects of silibinin, inhibitor of CYP3A4 and P-glycoprotein in vitro, on the pharmacokinetics of paclitaxel after oral and intravenous administration in rats. Pharmacology 2010; 85 (6): 350-6

139. Padda MS, Sanchez M, Akhtar AJ, Boyer JL. Drug-induced cholestasis. Hepatology 2011; 53 (4): 1377-87

140. Speroni E, Cervellati R, Govoni P, Guizzardi S, Renzulli C, Guerra MC. Efficacy of different Cynara scolymus preparations on liver complaints. J Ethnopharmacol 2003; 86 (2-3): 203-11

141. Benedek B, Geisz N, Jäger W, Thalhammer T, Kopp B. Choleretic effects of yarrow (Achillea millefolium s.l.) in the isolated perfused rat liver. Phytomedicine 2006; 13 (9-10): 702-6

142. Benedek B and Kopp B. Achillea millefolium L. s.l. revisited: recent findings confirm the traditional use. Wien Med Wochenschr 2007; 157 (13-14): 312-4

143. Krizman M, Baricevic D, Prosek M Determination of phenolic compounds in fennel by HPLC and HPLC-MS using a monolithic reversed-phase column. J Pharm Biomed Anal 2007; 43 (2): 481-5

144. Schütz K, Carle R, Schieber A Taraxacum--a review on its phytochemical and pharmacological profile. J Ethnopharmacol 2006; 107 (3): 313-23

145. Platel K and Srinlvasan K. Stimulatory influence of select spices on bile secretion in rats. Nutr Res 2000; 20 (10): 1493-1503

146. Shukla B, Visen PK, Patnaik GK, Dhawan BN. Choleretic effect of andrographolide in rats and guinea pigs. Planta Med 1992; 58 (2): 146-9

147. Khan BA, Abraham A, Leelamma S. Murraya koenigii and Brassica juncea--alterations on lipid profile in 1-2 dimethyl hydrazine induced colon carcinogenesis. Invest New Drugs 1996; 14 (4): 365-9

148. Yamahara J, Miki K, Chisaka T et al. Cholagogic effect of ginger and its active constituents. J Ethnopharmacol 1985; 13 (2): 217-25

0
回帖 返回旅游

泰国流行的排毒治疗到底是什么? 期待您的回复!

取消
zaibaike,已登录[退出]