肿瘤患者肌肉减少症患病率超过40%!维生素D和ω-3脂肪酸可治疗?
本文做者:蔡丽雅,赵文芝,杨振鹏,贺源,邓丽,张艳,石汉平(首都医科大学从属北京世纪坛病院 临床营养科,北京 100038)
PDF全文下载链接:
http://www.yixueqianyan.cn/CN/abstract/abstract3189.shtml
【摘要】 肿瘤患者中肌肉削减症的患病率超越40%。肿瘤化疗患者罹患肌肉削减症的风险高于一般人群,且肿瘤患者发作肌肉削减症后更容易呈现化疗不良反响,招致保存量量低下和预后不良。肌肉削减症的发作涉及激素变革、炎性反响等,其分子机造涉及调控肌肉卵白合成和降解的分子通路。维生素D通过感化于Fox-O亚族和泛素-卵白酶体通路改善肌肉削减症,而ω-3脂肪酸通过加强mTOR核糖体活性而加强肌肉合成代谢,二者均可对化疗产生正向影响。固然目前关于?用于肿瘤化疗患者肌肉削减症预防和治疗的研究数据相对缺乏,但其应用前景值得等待。
【关键词】 肌肉削减症;化疗;维生素D;ω-3脂肪酸
1998年,Baumgartner等[1]初次提出"肌肉削减症"的概念,用以描述老年人肌肉量量随年龄的增长而削减的情况。肌肉削减症的发作与年龄和特殊心理形态亲近相关。肿瘤患者是肌肉削减症的高发人群,某些化疗药物和靶向药物会加速或招致肌肉削减症的发作,严峻影响机体功用,降低患者生活量量[2]。肿瘤患者化疗前骨骼肌削减与化疗不良反响和机体失能呈正相关,与药物抗肿瘤反响和保存率呈负相关。目前预防肿瘤患者治疗期间发作肌肉削减症的非药物干涉包罗阻抗训练和饮食干涉,研究证明阻抗训练是改善肌肉削减症最有效的办法[3]。饮食干涉除供给肌肉合成或功用维持所必须的营养素(如卵白量、收链氨基酸、维生素D、ω-3脂肪酸等)外,还能改善患者整体的营养情况,加强药物抗肿瘤反响,改善整体预后。维生素D和ω-3脂肪酸别离通过其对肌肉一般构造和功用、肌肉能量和氨基酸合成的感化促进肌肉卵白量的合成、改善肌肉的力量和功用[4]。
1 肿瘤患者肌肉削减症研究现状1.1 肌肉削减症的诊断 肌肉削减症是一种停止性的全身普遍性骨骼肌纤维体积和数量(量量)削减,招致骨骼肌力量下降[5]。2010年,欧洲老年肌肉削减症工做组(European working group on sarcopenia in older people,EWGSOP)颁发共识[6],详细总结并介绍了与年龄有关的肌肉削减症的定义和筛查/诊断尺度,旨在识别和治疗肌肉削减症。2019
年EWGSOP更新了肌肉削减症的定义,强调低肌力是肌肉削减症的一项重要特征[7]。肌肉削减症按照发病原因可分为原发性和继发性,与年龄增长相关的骨骼肌老化是原发性肌肉削减症的独一原因,而其他原因(如活动削减、疾病和营养不良)可引起继发性肌肉削减症。肌肉削减症的筛查需要评估受试者年龄、步速、握力,筛查异常者需承受进一步诊断查抄,如通过生物电阻抗阐发(bioelectrical impedance analysis,BIA)、双能X射线(dual energy X-ray absorption,DEXA)、磁共振成像(magnetic resonance imaging,MRI)、计算机体层摄影(computerized tomography,CT)等来确诊。研究肿瘤相关肌肉削减症的学者,大多利用骨骼肌的剖解丈量做为初步筛查,如通过利用BIA、DEXA、CT等仪器设备,检测并计算机体骨骼肌、骨密度、内脏脂肪及含量;并根据差别查抄和计算办法对应的骨骼肌指数判断能否发作肌肉削减症。
1.2 肿瘤化疗患者中肌肉削减症的流行病学 肿瘤患者中肌肉削减症的患病率高于一般人群,比来的一项荟萃阐发显示,19%~74%的晚期实体肿瘤患者存在肌肉削减症,而罹患肌肉削减症与较差的总保存(overall survival,OS)相关,此中风险比(hazard ratio,HR)为1.44(P<0.001)[8]。图1总结了差别原发和继发肿瘤患者肌肉削减症的患病率,涉及的研究中肌肉削减症的诊断均参考CT查抄成果[9]。有关差别治疗下肿瘤患者肌肉削减症患病率的数据尚缺乏,一项在吉林省停止的小规模研究显示,承受化疗的肿瘤患者肌肉削减症患病率为85.6%(77/90),而在手术治疗和放疗的肿瘤患者中其患病率别离为81.7%和86.0%,但该研究并未发现承受治疗(手术、化疗或放疗)与未承受治疗的肿瘤患者间肌肉削减症患病率有显著差别[10]。
固然化疗的目标是减轻肿瘤负荷,促进安康,但治疗相关不良反响可能会损害人体的一般功用。
研究表白短期化疗自己能够招致肌肉量量的消耗。2004年,Freedman等[2]研究发现承受辅助化疗的乳腺癌女性与安康对照组女性比拟,固然体重无明显变革,但其体脂肪率从33.8%上升至37.9%、瘦体组织百分率从66.2%下降至62.1%;Rimar等[11]在浸润性膀胱癌的研究中发现,新辅助化疗患者治疗后呈现明显的瘦体组织下降,骨骼肌指数(skeletal muscle index,SMI)从49.1降至44.5,肌肉削减症患病率从61%上升至81%;一项关于消化道肿瘤患者的研究显示,化疗后肿瘤患者上臂围、握力等肌肉相关目标均显著下降,重度肌肉削减症患病率升高至33%[12]。那些研究均提醒,肿瘤化疗会影响骨骼肌量,增加肌肉削减症的发作风险。
肌肉削减症对肿瘤化疗的影响也备受存眷,肌肉削减症的发作可能损害化疗效果、增加化疗毒性,甚至影响保存情况。研究显示,罹患肌肉削减症的肿瘤患者中约50%会呈现化疗不良反响,而在无肌肉削减症的患者中不良反响发作率仅为20%[13]。在停止新辅助化疗的停顿期食管癌患者中,罹患肌肉削减症固然未显著影响化疗不良反响的发作率,但显著影响疗效,提醒肌肉削减症是疗效欠安的独立预测因素[13]。在停止亚叶酸钙+5-氟尿嘧啶+伊立替康+奥沙利铂计划化疗的停顿期胰腺癌患者中,罹患肌肉削减症的患者治疗失败时间(3.0个月∶6.1个月)和OS时间(11.3个月∶17.0个月)更短,提醒肌肉削减症是OS的独立预测因子(HR=1.37,P=0.045)[14]。在胃食管肿瘤、肝癌等实体肿瘤的化疗过程中也得出类似的成果[2,8,15-17]。
1.3 肌肉削减症的发作机造 肌肉削减症的病因涉及年龄和其他原因招致的退行性变革、营养素摄入不敷、体力活动缺乏或失重形态等,其发作机造与雄激素(androgen)、雌激素(estrogen)、生长激素(growth hormone)、胰岛素样生长因子-1(insulin-like growth factor-1,IGF-1)等排泄削减[5]、肌肉生长按捺素排泄增加有关,同时也与炎性反响有关[18],尤其是白介素-1β(interleukin-1β,IL-1β)、白介素-6(interleukin-6,IL-6)和肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)程度升高(图2)。目前已知有多条信号通路参与调理骨骼肌代谢的动态平衡,如图3所示肌肉削减症信号通路的关键分子包罗Akt和Smad,次要调控肌肉卵白降解和合成[19,20]。侵扰肌肉卵白合成和降解路子之间的平衡,使肌肉萎缩(肌肉削减症和恶病量)。
肿瘤化疗患者发作肌肉削减症的机造尚不明白。宏不雅层面,肿瘤的高消耗性、肿瘤停顿和化疗抵消化系统(如恶心、吐逆、食欲不振甚至无法进食)及躯体活动(如虚弱、乏力、嗜睡等)形成影响,一方面形成肌肉合成必须的卵白量、维生素等营养素的相对缺乏或摄入不敷,另一方面形成肌肉失用,招致肌肉卵白流失增加、合成削减。在中国老年肿瘤患者中,约25.4%的患者陈述查询拜访前1周食物摄入量削减了1/4[21];一项纳入606例老年肿瘤患者的研究发现,化疗招致患者总炊事和卵白量摄入量显著削减,营养不良风险升高[22];胃癌患者经6个月化疗后,食物方面如牛肉、低脂牛奶、新颖蔬菜、奶油等的摄入量明显削减,营养素方面如维生素A、维生素B1、维生素B6、维生素B12等的摄入量明显削减[23]。意大利的一项研究显示,入院治疗的老年患者约34.7%可诊断为肌肉削减症,其余65.3%的患者中约14.7%在出院时可诊断为肌肉削减症,且肌肉削减症的发作与住院天数亲近相关,即住院治疗期间生活情况和起居习惯的改动增加了肌肉削减症的发作风险[24]。
微不雅层面,某些化疗药物可能感化于肌肉削减症发作的某条通路或某些关键分子,诱导或加速肌肉流失。研究显示,化疗过程影响骨骼肌代谢的机造次要涉及骨骼和卵白量降解路子,如泛素-卵白酶体路子、自噬溶酶体路子、钙超载和钙激酶激活路子等。某些化疗药物可间接干扰以上通路,如顺铂可通过激活控造DNA转录的卵白复合体的细胞核因子-κB(nuclear factor-κB,NF-κB),上调泛素和卵白酶体,增加卵白量水解;同时炎症因子(IL-1β,IL-6和TNF-α)的释放促进了E3毗连酶与Atrogin-1泛素卵白连系,招致卵白水解;并且TNF-α加速骨骼肌合成代谢(卵白量丧失、胰岛素抵御),降低了肌肉弹性回缩力,干扰肌肉细胞的生成[25,26]。紫杉醇招致肿瘤生长因子-β(tumor growth factor-β,TGF-β)卵白上调,激活抑肌素基因,干扰肌肉的代谢平衡,使之偏向合成代谢[27]。紫杉烷类药物阐扬杀伤肿瘤感化的同时亦可间接影响肌肉,如抗血管生成药物可影响肌肉微血管系统,招致其血供削减;司美替尼形成线粒体损伤,影响肌肉的能量代谢,招致肌肉萎缩。
2 维生素D及ω-3脂肪酸与肌肉削减症肌肉削减症的治疗次要依赖雄激素、生长激素等促进合成代谢的激素类药物[18],此外,运动和营养干涉关于预防肿瘤患者发作肌肉削减症和延缓其停顿也具有重要感化。肿瘤是一种消耗性疾病,对肿瘤患者停止营养干涉更为关键,现已明白在肿瘤患者中弥补乳清卵白、收链氨基酸对肌肉削减症有改善感化[28]。常见的维生素D、ω-3脂肪酸如二十二碳六烯酸(docosahexoenoic acid,DHA)、二十碳五烯酸(eicosapentaenoic acid,EPA),对骨骼系统和免疫系统均有重要影响,但对肌肉削减症的影响尚无全面归纳。
2.1 维生素D和ω-3脂肪酸影响肌肉削减症的机造 维生素D是一种脂溶性维生素,能影响骨骼和肌肉的一般构造和功用,文献报导持久缺乏维生素D会招致肌肉萎缩和虚弱,尤其是Ⅱ型肌肉丧失更为明显[29]。目前已知的机造是1,25-二羟基维生素D3与其受体连系后,连系体被转运至细胞核,与9-顺式维甲酸受体连系,构成异二聚体,此异二聚体调理管控肌细胞成熟的Fox-O亚族,以致肌肉生长按捺素下调[30,31];同时,因为维生素D缺乏,泛素-卵白酶体路子过度激活,招致卵白量合成增加,肌肉萎缩[32]。维生素D缺乏还会招致肌动球卵白含量降低,线粒体钙离子(Ca2+)程度下降,肌浆网Ca2+摄取削减,血清肌酸激酶程度降低[33],招致骨骼肌异常。除了Ⅱ型肌纤维萎缩外,维生素D缺乏还与骨病和肌肉再生所需的卫星细胞丧失有关[35]。
ω-3脂肪酸是人体必须的多不饱和脂肪酸,具有重要的心理功用,ω-3脂肪酸通过多种差别的机造改善肌肉量量。ω-3脂肪酸通过磷酸化增加mTOR核糖体活性,按捺mTOR移位进入溶酶体[35]。在ω-3脂肪酸存鄙人,肌肉对胰岛素和氨基酸输注的合成代谢反响更强[36]。另一种机造涉及线粒体增加解偶联卵白-2,线粒体削减活性氧品种,下调卵白酶体卵白水解[37]。而ω-3脂肪酸通过磷酸化增加mTOR核糖体活性,按捺其进入溶酶体,使得肌肉可以充实操纵胰岛素和氨基酸停止合成代谢[35];且ω-3脂肪酸还可影响线粒体,增加解偶联卵白-2、削减线粒体氧化残基活性氧类(reactive oxygen species,ROS),下调卵白酶体介导的卵白水解[37]。
2.2 维生素D和ω-3脂肪酸对肿瘤化疗患者肌肉削减症的影响 因为疾病停顿或治疗反响,肿瘤化疗患者往往存在维生素D[38]和ω-3脂肪酸[39]摄入不敷或相对缺乏。研究显示,承受化疗的肿瘤患者中维生素D的缺乏率长短化疗患者的4倍。目前,在动物尝试和细胞尝试中,有关弥补维生素D对肌肉生长信号通路影响的研究良多,在临床上利用维生素D干涉安康老年人的肌肉削减症的研究也不稀有,但关于维生素D对肿瘤患者肌肉削减症和化疗期间肌肉削减症的影响的研究仍然缺乏。
同样,关于肿瘤化疗患者ω-3脂肪酸营养程度和ω-3脂肪酸对肿瘤化疗患者肌肉削减症影响的研究也相对缺乏。在一项小样本的随机试验中发现,肺癌患者化疗期间每天弥补2.2 g EPA较未弥补EPA的患者更少发作肌肉削减、体重丧失和肌肉骨化;弥补EPA组中69%的患者肌肉量增加或连结稳定,未弥补EPA组只要29%的患者肌肉量增加或连结稳定,各组间脂肪量无明显变革[40]。另一项研究比力EPA与等热量饮食的感化,化疗2个周期后,对照组患者瘦体组织下降,试验组患者瘦体组织增加,而两组患者肿瘤反响和保存率比力差别均无统计学意义[41]。关于肿瘤化疗患者弥补ω-3脂肪酸的临床研究表白,弥补ω-3脂肪酸可以减轻化疗不良反响,改善患者保存量量[37],那可能是ω-3脂肪酸降低肿瘤化疗患者肌肉削减症发作风险的根底之一。
3 小结跟着研究的深切,肌肉削减症的发作机造正在被逐渐提醒,其预防、筛查、诊断和治疗手艺也在逐渐完美。在肿瘤停顿和治疗过程中极易发作肌肉削减症,肿瘤化疗患者中肌肉削减症的患病率超越40%[42],一方面是因为化疗招致营养素摄入不敷、躯体活动削减,另一方面是因为化疗药物对泛素-卵白酶体路子、自噬溶酶体路子等通路和免疫系统等肌肉削减症发作机造的影响。维生素D和ω-3脂肪酸对骨骼肌形态和功用的维持至关重要,其用于承受化疗的肿瘤患者时亦可改善化疗效果,减轻化疗不良反响,将那两种营养素用于肿瘤化疗患者肌肉削减症的预防和治疗可能会产生更大的获益。
参考文献
[1] Baumgartner RN, Koehler KM, Gallagher D, et al. Epidemiology of sarcopenia among the elderly in New Mexicos[J]. Am J Epidemiol, 1998, 147(8):755-763.
[2] Freedman RJ, Aziz N, Albanes D, et al. Weight and body composition changes during and after adjuvant chemotherapy in women with breast cancers[J]. J Clin Endocrinol Metab, 2004, 89(5):2248-2253.
[3] Borde R, Hortobagyi T, Granacher U. Dose-Response Relationships of Resistance Training in Healthy Old Adults: A Systematic Review and Meta-Analysiss[J]. Sports Med, 2015, 45(12):1693-1720.
[4] Bo Y, Liu C, Ji Z, et al. A high whey protein, vitamin D and E supplement preserves muscle mass, strength, and quality of life in sarcopenic older adults: A double-blind randomized controlled trials[J]. Clin Nutr, 2019, 38(1):159-164.
[5] Dutta C. Significance of sarcopenia in the elderly[J]. J Nutr, 1997, 127(5 Suppl):992s-993s.
[6] Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older Peoples[J]. Age Ageing, 2010, 39(4):412-423.
[7] Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosiss[J]. Age Ageing, 2019, 48(1):16-31.
[8] Shachar SS, Williams GR, Muss HB, et al. Prognostic value of sarcopenia in adults with solid tumours: A meta-analysis and systematic reviews[J]. Eur J Cancer, 2016, 57:58-67.
[9] Bozzetti F. Forcing the vicious circle: sarcopenia increases toxicity, decreases response to chemotherapy and worsens with chemotherapys[J]. Ann Oncol, 2017, 28(9):2107-2118.
[10] Zhang G, Li X, Sui C, et al. Incidence and risk factor analysis for sarcopenia in patients with cancer[J]. Oncol Lett, 2016, 11(2):1230-1234.
[11] Rimar KJ, Glaser AP, Kundu S, et al. Changes in Lean Muscle Mass Associated with Neoadjuvant Platinum-Based Chemotherapy in Patients with Muscle Invasive Bladder Cancers[J]. Bladder Cancer, 2018, 4(4):411-418.
[12] Hopanci Bicakli D, Cehreli R, Ozveren A, et al. Evaluation of sarcopenia, sarcopenic obesity, and phase angle in geriatric gastrointestinal cancer patients: before and after chemotherapys[J]. Turk J Med Sci, 2019, 49(2):583-588.
[13] Ota T, Ishikawa T, Endo Y, et al. Skeletal muscle mass as a predictor of the response to neo-adjuvant chemotherapy in locally advanced esophageal cancers[J]. Med Oncol, 2019, 36(2):15.
[14] Kurita Y, Kobayashi N, Tokuhisa M, et al. Sarcopenia is a reliable prognostic factor in patients with advanced pancreatic cancer receiving FOLFIRINOX chemotherapys[J]. Pancreatology, 2019, 19(1):127-135.
[15] van Vugt JLA, Buettner S, Levolger S, et al. Low skeletal muscle mass is associated with increased hospital expenditure in patients undergoing cancer surgery of the alimentary tracts[J]. PLoS One, 2017, 12(10):e0186547.
[16] Antoun S, Baracos VE, Birdsell L, et al. Low body mass index and sarcopenia associated with dose-limiting toxicity of sorafenib in patients with renal cell carcinomas[J]. Ann Oncol, 2010, 21(8):1594-1598.
[17] Tan BH, Brammer K, Randhawa N, et al. Sarcopenia is associated with toxicity in patients undergoing neo-adjuvant chemotherapy for oesophago-gastric cancers[J]. Eur J Surg Oncol, 2015, 41(3):333-338.
[18] Rolland Y, Czerwinski S, Abellan Van Kan G, et al. Sarcopenia: its assessment, etiology, pathogenesis, consequences and future perspectivess[J]. J Nutr Health Aging, 2008, 12(7):433-450.
[19] Goodman CA, Mayhew DL, Hornberger TA. Recent progress toward understanding the molecular mechanisms that regulate skeletal muscle masss[J]. Cell Signal, 2011, 23(12):1896-1906.
[20] Hanaoka BY, Peterson CA, Horbinski C, et al. Implications of glucocorticoid therapy in idiopathic inflammatory myopathiess[J]. Nat Rev Rheumatol, 2012, 8(8):448-457.
[21] Kanesvaran R, Wang W, Yang Y, et al. Characteristics and treatment options of elderly Chinese patients with cancer as determined by Comprehensive Geriatric Assessment (CGA)s[J]. J Geriatr Oncol, 2014, 5(2):171-178.
[22] Bourdel-Marchasson I, Diallo A, Bellera C, et al. One-Year Mortality in Older Patients with Cancer: Development and External Validation of an MNA-Based Prognostic Scores[J]. PLoS One, 2016, 11(2):e0148523.
[23] Vahid F, Faghfoori Z, Davoodi SH. The Impact of the Disease Trend on the Macro and Micro-Nutrients Intake in Patients with Gastric Cancers[J]. Nutr Cancer, 2019:1-7.
[24] Martone AM, Bianchi L, Abete P, et al. The incidence of sarcopenia among hospitalized older patients: results from the Glisten studys[J]. J Cachexia Sarcopenia Muscle, 2017, 8(6): 907-914.
[25] Van Gammeren D, Damrauer JS, Jackman RW, et al. The IkappaB kinases IKKalpha and IKKbeta are necessary and sufficient for skeletal muscle atrophys[J]. FASEB J, 2009, 23(2):362-370.
[26] Gilliam LA, St Clair DK. Chemotherapy-induced weakness and fatigue in skeletal muscle: the role of oxidative stresss[J]. Antioxid Redox Signal, 2011, 15(9):2543-2563.
[27] Chen JL, Colgan TD, Walton KL, et al. The TGF-β Signalling Network in Muscle Development, Adaptation and Diseases[J]. Adv Exp Med Biol, 2016, 900:97-131.
[28] Yoshimura Y, Wakabayashi H, Yamada M, et al. Interventions for Treating Sarcopenia: A Systematic Review and Meta-Analysis of Randomized Controlled Studiess[J]. J Am Med Dir Assoc, 2017, 18(6):553.e1-553.e6.
[29] Ensrud KE, Blackwell TL, Cauley JA, et al. Circulating 25-hydroxyvitamin D levels and frailty in older men: the osteoporotic fractures in men studys[J]. J Am Geriatr Soc, 2011, 59(1):101-106.
[30] Wagatsuma A, Sakuma K. Vitamin D signaling in myogenesis: potential for treatment of sarcopenias[J]. Biomed Res Int, 2014, 2014:121254.
[31] Allen DL, Unterman TG. Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factorss[J]. Am J Physiol Cell Physiol, 2007, 292(1):C188-C199.
[32] Bhat M, Kalam R, Qadri SS, et al. Vitamin D deficiency-induced muscle wasting occurs through the ubiquitin proteasome pathway and is partially corrected by calcium in male rats[J]. Endocrinology, 2013, 154(11):4018-4029.
[33] Zittermann A. Vitamin D in preventive medicine: are we ignoring the evidences?[J]. Br J Nutr, 2003, 89(5):552-572.
[34] Nomura G, Koshino Y, Morimoto H, et al. Vitamin D resistant hypophosphatemic osteomalacia associated with osteosarcoma of the mandible: report of a cases[J]. Jpn J Med, 1982, 21(1): 35-39.
[35] Yasuda M, Tanaka Y, Kume S, et al. Fatty acids are novel nutrient factors to regulate mTORC1 lysosomal localization and apoptosis in podocytess[J]. Biochim Biophys Acta, 2014, 1842(7):1097-1108.
[36] Smith GI, Atherton P, Reeds DN, et al. Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia-hyperaminoacidaemia in healthy young and middle-aged men and womens[J]. Clin Sci (Lond), 2011, 121(6):267-278.
[37] Shin SK, Kim JH, Lee JH, et al. Docosahexaenoic acid-mediated protein aggregates may reduce proteasome activity and delay myotube degradation during muscle atrophy in vitros[J]. Exp Mol Med, 2017, 49(1):e287.
[38] Fakih MG, Trump DL, Johnson CS, et al. Chemotherapy is linked to severe vitamin D deficiency in patients with colorectal cancers[J]. In J Colorectal Dis, 2009, 24(2):219-224.
[39] de Aguiar Pastore Silva J, Emilia de Souza Fabre M, and Waitzberg DL. Omega-3 supplements for patients in chemotherapy and/or radiotherapy: A systematic reviews[J]. Clin Nutr, 2015, 34(3):359-366.
[49] Murphy RA, Mourtzakis M, Chu QS, et al. Nutritional intervention with fish oil provides a benefit over standard of care for weight and skeletal muscle mass in patients with nonsmall cell lung cancer receiving chemotherapys[J]. Cancer, 2011, 117(8):1775-1782.
[41] Sanchez-Lara K, Turcott JG, Juarez-Hernandez E, et al. Effects of an oral nutritional supplement containing eicosapentaenoic acid on nutritional and clinical outcomes in patients with advanced non-small cell lung cancer: randomised trials[J]. Clin Nutr, 2014, 33(6):1017-1023.
[42] Daly LE, Ní Bhuachalla ÉB, Power DG, et al. Loss of skeletal muscle during systemic chemotherapy is prognostic of poor survival in patients with foregut cancers[J]. J Cachexia, Sarcopenia Muscle, 2018, 9(2):315-325.