lim[1-(1/x)]^x
=lim{[1+(-1/x)]^(-x)}^(-1)
=e^(-1)
=1/e
lim[1-(1/x)]^(-x)
=lim[1+(-1/x)]^(-x)
=e
lim(1-x)^(1/x)
=lim{[1+(-x)]^(-1/x)}^(-1)
=e^(-1)
=1/e
lim(1-x)^(-1/x)
=lim[1+(-x)]^(-1/x)
=e.
答案:1,第一个极限为e^-1,第二个为e;
2.第一个极限为e^-1,第二个为e
(1)lim〈x→∞〉(1-1/x)^x=lim〈-x→∞〉[(1-1/x)^(-x)]^(-1)=e^(-1)=1/ m〈x→∞〉(1-1/x)^(-x)=lim〈-x→∞〉[1+1/(-x)]^(-x)=e.(2)lim〈x→0〉(1-x)^(1/x)=lim〈-x→0〉[1+(-x)]^[1/(-x)]^(-1)=e^(-1)=1/ m〈x→0〉(1-x)^(-1/x)=lim〈-x→0〉[1+(-x)]^[1/(-x)]=e.
0